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Abstract.13

Background: The transition from mild cognitive impairment (MCI) to dementia is of great interest to clinical research
on Alzheimer’s disease and related dementias. This phenomenon also serves as a valuable data source for quantitative
methodological researchers developing new approaches for classification. However, the growth of machine learning (ML)
approaches for classification may falsely lead many clinical researchers to underestimate the value of logistic regression
(LR), which often demonstrates classification accuracy equivalent or superior to other ML methods. Further, when faced
with many potential features that could be used for classifying the transition, clinical researchers are often unaware of the
relative value of different approaches for variable selection.
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Objective: The present study sought to compare different methods for statistical classification and for automated and
theoretically guided feature selection techniques in the context of predicting conversion from MCI to dementia.
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Methods: We used data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) to evaluate different influences of
automated feature preselection on LR and support vector machine (SVM) classification methods, in classifying conversion
from MCI to dementia.
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Results: The present findings demonstrate how similar performance can be achieved using user-guided, clinically informed
pre-selection versus algorithmic feature selection techniques.
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Conclusion: These results show that although SVM and other ML techniques are capable of relatively accurate classification,
similar or higher accuracy can often be achieved by LR, mitigating SVM’s necessity or value for many clinical researchers.

28

29

Keywords: Alzheimer’s disease, classification, machine learning, mild cognitive impairment, support vector machine, variable
selection

30

31

∗Correspondence to: Andrew R. Bender, Department of Epi-
demiology and Biostatistics, College of Human Medicine,
Michigan State University, East Lansing, MI, USA. E-mail:
arbender@msu.edu.

1Data used in preparation of this article were obtained
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)

database (http://adni.loni.usc.edu). As such, the investigators
within the ADNI contributed to the design and implemen-
tation of ADNI and/or provided data but did not participate
in analysis or writing of this report. A complete listing of
ADNI investigators can be found at: http://adni.loni.usc.edu/wp-
content/uploads/how to apply/ADNI Acknowledgement List.pdf

ISSN 1387-2877/$35.00 © 2021 – IOS Press. All rights reserved.

mailto:arbender@msu.edu
http://adni.loni.usc.edu
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf


U
nc

or
re

ct
ed

 A
ut

ho
r P

ro
of

2 Z. Liu et al. / Prior Knowledge in Classification of MCI to Alzheimer’s Disease

INTRODUCTION32

Alzheimer’s disease (AD) is a progressive, age-33

related, neurodegenerative disease and the most34

common cause of dementia [1–3]. Behaviorally, AD35

is commonly preceded by mild cognitive impair-36

ment (MCI), a syndrome characterized by declines37

in memory and other cognitive domains that exceed38

cognitive decrements associated with normal aging39

[2, 4]. However, the prodromal symptoms of MCI40

are not prognostically deterministic: individuals with41

MCI tend to progress to diagnoses of probable AD42

at a rate of 8%–15% per year, and many conversions43

are detectable within 3 years of initial presentation44

[5–7]. Research efforts to provide new insights into45

the incidence of MCI-to-AD conversion have focused46

largely on clinically or biologically relevant features47

(i.e., neuroimaging markers, clinical exam data, neu-48

ropsychological test scores) and on different methods49

for statistical classification [8].50

For clinical researchers, however, there may be51

a tendency to conflate more sophisticated, novel52

analytic approaches and the value of multimodal53

information from neuroimaging and clinical assess-54

ment. Moreover, whereas statisticians may inherently55

understand the comparability of different quantita-56

tive approaches, the novelty of both big data and57

data-driven approaches for studying MCI-to-AD con-58

version may lead clinical researchers to assume that59

such data-driven methods are inherently superior to60

more theoretically grounded approaches. Thus, the61

value of using extant findings and domain exper-62

tise to help guide and constrain the application of63

newer data-driven approaches capable of capitalizing64

on emergent big data may be a particularly important65

consideration for clinical researchers.66

Statistical classification in clinical research has tra-67

ditionally utilized binary logistic regression (LR).68

However, key attributes of modern clinical and neu-69

roimaging data, including high dimensionality and70

the presence of ground truth estimates of pathology71

and diagnosis provide new opportunities for quantita-72

tive research. This has led to a substantial expansion73

in the use of data from the Alzheimer’s Disease Neu-74

roimaging Initiative (ADNI; http://adni.loni.usc.edu)75

for quantitative research and methodological devel-76

opment, particularly by researchers utilizing and77

developing prediction and classification methods in78

machine learning (ML). Besides LR, support vector79

machine (SVM) has quickly become the most com-80

mon type of ML classifier for diagnostic prediction81

and classification with ADNI data. In general, LR82

works well when the data is linearly separable, and the 83

number of data is greater than the number of features. 84

Moreover, SVM and LR have similar misclassifica- 85

tion rates (MCRs) when used to diagnose malignant 86

tumors from imaging data [9, 10]. 87

Indeed, before the rapid expansion of ML research 88

and applied work over the past decade, many clin- 89

ical researchers and those outside of engineering 90

and mathematically intensive disciplines had little 91

exposure to classification approaches other than LR. 92

Despite its growing popularity, the relative benefits 93

of SVM or other forms of ML [11, 12] over LR for 94

such classification are not always apparent. Although 95

this may be of little surprise to statisticians and quan- 96

titative researchers, such perspectives are often lost 97

on clinical researchers, whose implicit beliefs in the 98

superiority of ML is driven by the volume of pub- 99

lications, rather than through training or empirical 100

demonstration. 101

Most efforts to develop new classification meth- 102

ods for prediction of MCI-to-AD conversion are 103

well suited to integrate measures from multiple 104

sources such as demographics, clinical rating scores, 105

neuropsychological testing, neuroimaging, genetic 106

markers, etc. However, identifying which combina- 107

tion of features most accurately classifies conversion 108

from MCI to AD is a key challenge for ADNI, and 109

may vary by method. The L1 norm regularization 110

method (i.e., L1) is a highly used feature selection 111

technique for LR and SVM. L1 is popular for address- 112

ing circumstances in which the number of features 113

is quite large or even larger than the sample size. 114

Despite some risk of abusing the statistical termi- 115

nology, the problem is often generically referred to 116

as the “small n, large p” or high dimensional prob- 117

lem. The L1 technique has dual impacts, namely the 118

algorithm can (i) optimize a higher number of param- 119

eters in comparison to sample size, and (ii) reduce 120

the effective number of parameters (i.e., perform- 121

ing variable selection). This powerful technique has 122

been implemented in ADNI data with LR [13]. Fur- 123

thermore, L1 and other algorithmic feature selection 124

methods used in ML suffer from one key limitation: 125

they are agnostic to theoretical considerations, and as 126

such, they cannot interpret why selected features are 127

meaningful and important to the model. When sam- 128

pling from a large pool of features, the algorithmic 129

approaches fail to consider prior knowledge of fea- 130

tures and their associations with the relevant systems 131

in variable selection. Therefore, domain expertise and 132

prior knowledge may afford additive or differential 133

value for choosing features and interpreting model 134

http://adni.loni.usc.edu
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results over algorithmic feature selection methods135

alone.136

However, most real-world problems occur in the137

context of additional information about each poten-138

tial feature and its conceptual relationship with the139

phenomenon being classified. Other than using L1140

feature selection, manually trimming the list of141

potential predictor variables can also protect against142

over-fitting, and also offers potential insight into143

why selected features are important to the model.144

When guided by prior knowledge, user-guided or145

‘manual’ feature selection may be a valuable addi-146

tional step to help minimize potentially spurious147

effects. This perspective is frequently lost on applied148

researchers, as most commonly used variable selec-149

tion algorithms are context-free—that is, they only150

look at relationships within the data set, and cannot151

factor in the wider meanings of variables. Further-152

more, this also means that automated algorithms may153

identify relationships among a large number of pre-154

dictor variables that are spurious and are unlikely155

to generalize outside the data set. Although there156

are a vast number of potential neuroimaging fea-157

tures in ADNI data, the present study focused only158

on regional brain volumes segmented from struc-159

tural magnetic resonance imaging (MRI) data, the160

most common neuroimaging datatype for classify-161

ing MCI-to-dementia conversion. In contrast to prior162

studies that used a limited set of volumetric brain163

features, the present study utilized data generated164

by modern multi-atlas segmentation methods and165

analyses included up to 259 features—anatomically166

specific gray and white matter volumes. However, the167

large pool of extant findings from studies evaluat-168

ing regional brain MRI volumetry in prediction and169

classification of MCI-to-dementia conversion using170

both limited and expansive feature sets also provides171

a valuable set of priors for relevant brain regions172

[14–19]. Thus, applied researchers are often left with173

the conundrum of more confirmatory approaches that174

use few regions in classification or more exploratory175

methods in which prior findings have little value.176

The present study addressed two questions regard-177

ing commonly used classification approaches for178

predicting MCI-to-dementia conversion in multi-179

modal data from ADNI. First, we compared180

performance accuracy of binary LR with SVM in181

classifying MCI-to-dementia conversion. Second, we182

asked if applying prior knowledge in feature selection183

outperforms algorithmic variable selection alone. We184

hypothesized that 1) LR would perform compara-185

bly to SVM, and 2) user-guided variable selection186

would outperform algorithmic variable selection 187

alone. This work is intended to demonstrate to clinical 188

researchers the benefit of using ML in an informed 189

fashion, rather than as a ‘black box’ that obscures 190

clear interpretation. Moreover, we wish to empha- 191

size that this study is not meant to highlight a novel 192

innovation in quantitative methods, but rather to pro- 193

vide an important example to applied researchers 194

regarding the comparable value of ML methods and 195

importance of domain expertise in classification with 196

ADNI data. 197

MATERIALS AND METHODS 198

Data used in the preparation of this arti- 199

cle were obtained from the ADNI database 200

(http://adni.loni.usc.edu). The ADNI was launched 201

in 2003 as a public-private partnership, led by Prin- 202

cipal Investigator Michael W. Weiner, MD. The 203

primary goal of ADNI has been to test whether serial 204

MRI, positron emission tomography (PET), other 205

biological markers, and clinical and neuropsycho- 206

logical assessment can be combined to measure the 207

progression of MCI and early AD. For up-to-date 208

information, see http://www.adni-info.org. 209

Determination of sensitive and specific markers of 210

preclinical AD and MCI is intended to aid researchers 211

and clinicians to develop new treatments and monitor 212

their effectiveness, as well as reduce the time and 213

cost of clinical trials. Data in the present study came 214

from all sites across the U.S and Canada. All ADNI 215

study participants included in the present analyses 216

were between 55 and 90 years old, spoke English 217

or Spanish as their native language, and had a study 218

partner who provided an independent assessment of 219

functioning. 220

This study used a subset of the 819 participants 221

from ADNI-1 diagnosed with MCI at baseline and for 222

whom the data from demographic, clinical cognitive 223

assessments, APOE4 genotyping, and MRI measure- 224

ments were also available. To evaluate differences in 225

classification performance due to participant inclu- 226

sion and drop out, we subdivided the sample into 227

two overlapping groups. After applying other criteria 228

for inclusion, Group One included all patients whose 229

follow-up period was at least 36 months (n = 265); 230

Group Two consisted of all patients with follow-up 231

assessments at 24 months (n = 308). Although the 232

ADNI study protocol includes additional follow-up 233

visits at 6-month intervals, the present study only 234

evaluated baseline data for features (i.e., clinical, 235

http://adni.loni.usc.edu
http://www.adni-info.org
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Table 1
Sample Sizes by Timing and Diagnosis: Group One and Two

Group Time # MCI-S # MCI-C # Total
(y = 0) (y = 1) patients

One 36 months 101 164 265
Two 24 months 122 186 308

Table 1 shows the number of MCI-C, MCI-S, and total subjects
in Group One and Two. The number of MCI-C patients is higher
than MCI-S patients in both groups.

neuropsychological, brain volumetric) in classifica-236

tion analyses. In addition, identification of stable237

versus converting clinical outcomes only considered238

longer-term outcomes based on assessments at 2 and239

3 years after baseline. The final samples included240

265 and 308 study participants in Groups One and241

Two, respectively, who met criteria for inclusion.242

Both Groups included participants who were stable in243

their diagnosis (MCI-S) and those who converted to a244

diagnosis of dementia over the 2 or 3 years (MCI-C).245

Table 1 shows the participant characteristics. Diag-246

nostic criteria for MCI included a Mini-Mental State247

Examination (MMSE) score at baseline between 24248

and 30, a Clinical Dementia Rating (CDR) score of249

0.5, and a subjective memory complaint, in addition250

to objective memory loss measured by education-251

adjusted scores on the Logical Memory II subscale252

of the Wechsler Memory Scale, generally preserved253

activities of daily living and no dementia. The diag-254

nostic criteria for dementia were an MMSE score255

between 20 and 26, and a CDR score between 0.5 and256

1.0. The clinical status of each participant diagnosed257

with MCI was re-assessed at each follow-up visit and258

updated to reflect one of several outcomes (e.g., MCI259

or dementia subtypes). The MCI-C and MCI-S group260

designations were based on this follow-up clinical261

diagnosis and marked as either 1 for MCI-C or 0 for262

MCI-S in classification study.263

Data used in classification264

Evaluation of extant reports of common predic-265

tors of conversion from MCI to dementia focused on266

dimensions of neuropsychological test performance,267

clinical assessment, genetic data, and regional brain268

volumes. In the present study, we first divided these269

variables into two sets of features, with all non-brain270

volumetric variables in one set and all variables rep-271

resenting regional brain volumes in a second set. In272

addition, we created a third set of features from the273

volumetry feature set that only included 26 of the274

259 brain volumes. Henceforth, we refer to mod-275

els that only include one of these three feature sets 276

as ‘single-modality,’ whereas models that combine 277

brain and non-brain feature sets are referred to as 278

‘multi-modal.’ 279

Clinical cognitive assessment and genetic data 280

We considered a total of 19 clinical features 281

as potential predictors of MCI-to-AD progression 282

in our classification analyses. These included the 283

following assessment scores: the MMSE, CDR- 284

Sum of Boxes, Alzheimer’s Disease Assessment 285

Scale-cognitive sub-scale (ADAS-cog), Functional 286

Activities Questionnaire (FAQ) measures of activities 287

of daily living, Trail Making Test-B (TRABSCOR), 288

the immediate and delayed recall components of 289

the Rey Auditory Verbal Learning Test (RAVLT), 290

the Digit-Symbol Coding test (DIGT), and the 291

Digit Symbol Substitution Test from the Preclinical 292

Alzheimer Cognitive Composite (mPACCdigit). We 293

also considered genotype for carriers of the epsilon- 294

4 allele of the apolipoprotein E (APOE) gene [8] 295

as a genetic predictor in this study. Table 2 sum- 296

marizes all 19 clinical, demographic, and genetic 297

features used in this study. Preliminary compari- 298

son of six clinical and genetic predictors by MCI-C 299

and MCI-S subgroups showed five of them (APOE4, 300

ADAS4, CDR, MMSE, and RAVLT.learning) signif- 301

icantly differ between the groups, whereas one (SEX) 302

does not. Figures 1 and 2 illustrate the distribution of 303

these predictors for both groups. Overall, in compari- 304

son to MCI-S participants, those in the MCI-C group 305

were more cognitively and functionally impaired at 306

baseline, exhibited greater verbal memory impair- 307

ments, and included a greater proportion of APOE4 308

carriers. 309

MRI data 310

Structural MRI data were collected according to 311

the ADNI acquisition protocol using T1-weighted 312

scans (GradWarp, B1 Correction, N3, Scaled) [20]. 313

These data included baseline structural MRI scans 314

of 840 ADNI participants, including 230 diag- 315

nosed as cognitively normal, 200 with diagnoses of 316

dementia, and 410 diagnosed with MCI. Processing 317

for region-of-interest (ROI)-based volumetric data 318

used in the present study included brain extraction 319

[21] and a multi-atlas, consensus-based label fusion 320

scheme for anatomical parcellation [22] to generate 321

template-based ROIs deformed to individual subject 322

space. MRI scans were automatically segmented into 323
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Table 2
Clinical Features and Cognitive Assessment Score of Group One

Characteristics MCI-S MCI-C Test statistic P

Age (y) 74.34 ± 7.78 74.84 ± 6.83 –0.528 > 0.5a

Education (y) 15.57 ± 2.94 15.73 ± 2.91 –0.527 > 0.5b

Sex, % female 33.67% 34.14% 0 1b

APOE4 carriers % 34.65% 62.19% 17.900 < 0.001a

CDRSB 1.23 ± 0.61 1.72 ± 0.92 –5.237 < 0.001a

MMSE score 27.61 ± 1.74 26.82 ± 1.71 3.645 < 0.001a

ADAS11 8.89 ± 3.79 12.29 ± 4.16 –6.823 < 0.001a

ADAS13 14.48 ± 5.50 20.01 ± 5.79 –7.795 < 0.001a

ADASQ4 4.76 ± 2.19 6.77 ± 2.21 –7.339 < 0.001a

RAVLT.immediate 36.21 ± 10.10 29.10 ± 7.98 6.021 < 0.001a

RAVLT.learning 4.19 ± 2.74 2.91 ± 2.26 4.231 < 0.001a

RAVLT.forgetting 4.31 ± 2.59 4.47 ± 2.15 –1.501 < 0.135a

RAVLT.perc.forgetting 51.55 ± 31.04 72.85 ± 30.45 –5.464 < 0.001a

LEDLTOTAL 4.96 ± 2.36 3.41 ± 2.66 4.931 < 0.001a

DIGTSCOR 40.75 ± 11.09 36.62 ± 10.96 2.882 < 0.005a

TRABSCOR 109.43 ± 62.94 132.09 ± 71.36 –2.704 < 0.007a

FAQ 1.50 ± 2.99 4.96 ± 4.79 –7.243 < 0.001a

mPACCdigit –5.38 ± 2.96 –8.06 ± 2.96 7.174 < 0.001a

mPACCtrailsB –5.47 ± 3.06 –8.22 ± 2.98 7.174 < 0.001a

Table only for Group One where has 265 patients and 36 months follow-up time. Values are shown as
mean ± standard deviation or percentage. Test statistics and p-values for differences between MCI-
S and MCI-C are based on (a) t-test or (b) chi- square test. MCI-S, non-progressive MCI; MCI-P,
progressive MCI; APOE, apolipoprotein E; MMSE, Mini-Mental State Examination; RAVLT, The
Rey Auditory Verbal Learning Test (immediate: sum of 5 trails; learning: trial 5-trial 1; Forgetting:
trial 5-delayed; perc.forgetting: Percent forgetting); DIGT, The Digit- Symbol Coding test; TRAB,
Trail Making tests; CDRSB, Clinical Dementia Rating Scaled Response; FAQ, Activities of Daily
living Score; ADAS, Alzheimer’s Disease Assessment Scale–Cognitive sub-scale; mPACCdigit,
the Digit Symbol Substitution Test from the Preclinical Alzheimer Cognitive Composite.

Fig. 1. Comparison of distributions for baseline predictor variables between MCI-S and MCI-C groups. (a) The mean MMSE score in MCI-S
is higher than in MCI-C. (b) Mean Learning scores of MCI-C and MCI-S groups are 2.5 and 5.

145 anatomic ROIs spanning the entire brain. An324

additional 114 derived ROIs were calculated by com-325

bining single ROIs within a tree hierarchy, to obtain326

volumetric measurements from larger structures [20].327

In total, 259 ROIs were measured and used as poten-328

tial predictors of MCI-to-dementia progression in this329

study.330

One of the goals of this study is to investigate if331

manually selecting predictors improves a model’s332

performance. Based on the extant literature [23], we 333

manually selected 26 out of 259 features as theo- 334

retically significant predictors of MCI to dementia 335

progression (Table 3) [14–19]. While many brain 336

regions have been reported as showing some relation- 337

ship to MCI-to-dementia progression, prior reports 338

and reviews clearly implicate hippocampal and 339

entorhinal cortical volumes as markers of such con- 340

version. In addition, we manually selected additional 341



U
nc

or
re

ct
ed

 A
ut

ho
r P

ro
of

6 Z. Liu et al. / Prior Knowledge in Classification of MCI to Alzheimer’s Disease

Fig. 2. Comparisons between MCI-S and MCI-C groups on baseline predictor variables. The y-axis of panels (a) through (d) represents the
number of participants developing AD. Blue and red bars represent non-converters and converters, respectively. Panel (a) shows a greater
number of converters than non-converters for both men and women. Panel (b) shows more than half of MCI-C subjects are APOE4 carriers
and approximately 70% MCI-S subjects are non-APOE4 carriers. Panel (c) shows MCI-S subjects have the relatively lower CDR score
and MCI-C subjects have higher CDR score. The number of people in MCI-C group has a downward trend as CDR score increases. Panel
(d) shows MCI-C subjects have the relatively higher ADASQ4 score. The average of ASADQ4 score of MCI-S and MCI-C subjects are
approximately 5 and 8, respectively.

regions based on their common occurrence across342

reports, including cingulate gyrus, precuneus,343

amygdala, inferior frontal gyrus, superior parietal344

lobule, and lobar white matter volumes.345

Method and algorithm346

In the following section, we utilize binary LR347

and SVM classification techniques to investigate348

which approach yields superior discrimination accu-349

racy in the context of ADNI data. Prior comparisons350

of logistic regression and SVM have reported that351

SVM requires fewer variables than logistic regres-352

sion to achieve an equivalent level of MCR [10,353

24]. These also report SVM performs better than354

LR with microarray expression data [10]. Further-355

more, SVMs have a nice dual form, giving sparse356

solutions when using the kernel trick. In addition,357

both methods involve minimizing some cost associ-358

ated with the misclassification based on likelihood359

ratio for a probabilistic model. Therefore, LR and360

SVM share common roots in statistical pattern recog- 361

nition, which we utilize in the comparison of their 362

performance on multi-modal ADNI data. 363

Logistic regression 364

LR is the most commonly used machine learning
approach for binary classification. In the past decade
this has been applied to task of MCI-to-dementia con-
version [13, 25, 26]. In the present study, we consider
a supervised learning task where we are given M
training examples D = (xi ,yi ), i = 1, . . . M. Here each
xi �RN is N dimensional feature vectors, and yi � 0,1
is a class label. The goal of LR is to model the proba-
bility p of a random variable y being 1 or 0 given the
experimental data x. The logistic regression model is
defined as follows:

logit p = log
p

1 − p
(1)
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Table 3
Pre-selected MRI features of Group One

Characteristics MCI-S MCI-C Test statistic p

HippoR 3684 ± 438 3366 ± 437 5.735 < 0.001
HippoL 3414 ± 418 3105 ± 388 5.994 < 0.001
flWMR 96720 ± 6218 96976 ± 5585 –0.338 0.73
flWML 93671 ± 5836 94238 ± 5160 –0.802 0.42
plWMR 47197 ± 3415 47141 ± 3098 0.135 0.89
plWML 50149 ± 3714 50038 ± 4367 0.242 0.81
tlWMR 56076 ± 3252 55934 ± 2931 0.359 0.72
tlWML 55412 ± 3396 55468 ± 3023 –0.136 0.89
ACgCR 3167 ± 756 3128 ± 641 0.438 0.66
ACgCL 4104 ± 787 4075 ± 689 0.312 0.76
EntR 2189 ± 365 1983 ± 373 4.412 < 0.001
EntL 2050 ± 399 1844 ± 356 4.240 < 0.001
MCgCR 4176 ± 547 4200 ± 541 –0.341 0.73
MCgCL 3988 ± 493 4002 ± 559 –0.213 0.83
MFCR 1581 ± 342 1505 ± 524 1.805 0.07
MFCL 1566 ± 285 1548 ± 291 0.487 0.62
OpIFGR 2575 ± 608 2424 ± 546 2.021 0.04
OpIFGL 2465 ± 550 2361 ± 579 1.466 0.14
OrIFGR 1252 ± 315 1196 ± 362 1.322 0.18
OrIFGL 1514 ± 335 1398 ± 356 2.658 < 0.001
PCgCR 3679 ± 466 3528 ± 415 2.657 < 0.001
PCgCL 3991 ± 442 3789 ± 424 3.676 < 0.001
PCuR 10129 ± 1193 9862 ± 1313 1.701 0.09
PCuL 10005 ± 1263 9759 ± 1299 1.522 0.13
SPLR 8867 ± 1140 8693 ± 1219 1.180 0.02
SPLL 8880 ± 1192 8662 ± 1313 1.390 0.17

Values are shown as mean ± standard deviation or percentage. Test statistics and p-values for dif-
ferences between MCI-C and MCI-S are based on t-test. MCI-S, non-progressive MCI; MCI-C,
progressive MCI; HippoR, Right Hippocampus; HippoL, Left Hippocampus; flWMR, frontal lobe
WM right; flWML, frontal lobe WM left; plWMR, parietal lobe WM right; plWML, parietal lobe
WM left; tlWMR, temporal lobe WM right; tlWML, temporal lobe WM left; ACgCR, Right ACgG
anterior cingulate gyrus; ACgCL, Left ACgG anterior cingulate gyrus; EntR, Right Ent entorhi-
nal area; EntL, Left Ent entorhinal area; MCgCR, Right MCgG middle cingulate gyrus; MCgCL,
Left MCgG middle cingulate gyrus; MFCR, Right MFC medial frontal cortex; MFCL, Left MFC
medial frontal cortex; OpIFGR, Right OpIFG opercular part of the inferior frontal gyrus; OpIFGL,
Left OpIFG opercular part of the inferior frontal gyrus; OrIFGR, Right OrIFG orbital part of the
inferior frontal gyrus; OrIFGL, Left OrIFG orbital part of the inferior frontal gyrus; PCgCR, Right
PCgG posterior cingulate gyrus; PCgCL, Left PCgG, posterior cingulate gyrus; PCuR, Right PCu
precuneus; PCuL, Left PCu precuneus; SPLR, Right SPL superior parietal lobule; SPLL, Left SPL
superior parietal lobule.

Logit, the natural logarithm of the odds, is the
key concept that underlies logistic regression. The
equation for LR is:

log
P (yi = 1 |xi; β )

1 − P (yi = 1 |xi; β )
=

∑N

j=1
βjxij (2)

where β = (�1, . . . �N )T are the parame-
ters or weights of the logistic regression
model, xi ,j = (xi1 , . . . xiN ), i = 1, . . . M. Also,
P (yi = 1 |xi; β ) is the probability that ith MCI
patient will develop dementia and P (yi = 0 |xi; β )
is the probability that ith MCI patient will not
develop dementia. Denote P (yi = 1 |xi; β ) = h (xi),

then

h (xi) = 1

1 + exp
(∑N

j=1 −βjxij

) (3)

LR is usually trained by minimizing an error func-
tion; an appropriate choice of such a function for
binary classification problems is the cross-entropy
error:

ei (β) = −yi log (h (xi)) − (1 − yi) log (1 − h (xi))
(4)
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The total cost over the data D = (xi ,yi ),i = 1,...M is:

J (β) = − 1

M[∑M

i=1
yi log (h (xi)) − (1 − yi) log (1 − h (xi))

]
(5)

Consider the problem of finding the maximum
likelihood estimate (MLE) of the parameters � for
the unregularized logistic regression model. To find
the optimized weights �, the total cost needs to be
minimized. The optimization function can be written:

βoptimal = minβ − 1

M[∑M

i=1
yilog (h (xi)) − (1 − yi) log (1 − h (xi))

]
(6)

Solving Equation (6) yields the optimal weights
of β. However, the model-building challenge is to
abstract the underlying distribution from the partic-
ular instance D of samples because of the relatively
small sample size, as compared to the number of fea-
tures. The problem of replicating the data set instead
of identifying the underlying distribution is known
as overfitting [27]. To avoid the overfitting problem,
it is often necessary to apply a dimension reduc-
tion technique. L1 and L2 norm are widely used to
avoid overfitting, especially when there is a only
small number of training examples, or when there
is a larger number of features to be learned. L1 norm
or lasso is also often used for feature selection and
has been shown to generalize well in the presence of
many irrelevant features [28, 29]. L1 regularization is
implemented by adding L1 norm to the cost function;
the cost function and the optimization function were
based on the following:

J (β) = − 1

M

[∑M

i=1
yilog (h (xi))

− (1 − yi) log (1 − h (xi))
] + λ |β| (7)

and

βoptimal = minβ

{
− 1

M

[∑M

i=1
yilog (h (xi))

− (1 − yi) log (1 − h (xi))

]
+ λ |β|

}
(8)

where � is positive tuning parameter. This Equation365

(8) is referred to as L1 regularized logistic regression.366

Support vector machine 367

SVM is another classification and regression 368

method that can handle high dimensional feature 369

vectors. Algorithmically, SVMs build optimal bound- 370

aries between data sets by solving a constrained 371

quadratic optimization problem [30–34]. The number 372

of studies applying SVM to evaluate classification of 373

conversion from MCI to dementia has grown over the 374

past decade [1, 2, 5, 8, 23, 35–39]. 375

We briefly review basic support vector machines
with linear kernel (SVM-linear) for classification
problems: Let βT h (x) + β0 = 0 denote an equidis-
tant hyperplane (decision surface) to the closest point
of each class on the new space. The goal of SVMs is
to find β and β0 such that

∣∣βT h (x) + β0

∣∣ = 1 for
all points closer to the hyperplane. In the following
classifier construction, one assumes that:

βT h (xi) + β0 =
{

� 1 if yi = 1

� −1 if yi = 0
(9)

such that the distance from the closest point of
each class to the hyperplane is 1/||β|| and the distance
between the two groups is 2/||β||. To maximize the
margin, the SVM requires the solution of the follow-
ing optimization primal problem [40]:

minβ,β0

∑M

i=1

{
1 − yi

[
β0 +

∑N

j=1
βT

j hj

(
xij

)]}
(10)

where hj is the kernel function which is a linear 376

function for SVM-linear. Specifically, we choose, hj 377

(xj ) = xj for j-th covariate. 378

To make the algorithm work for highly correlated
features and improve the fitted model’s prediction
accuracy, we reformulate our optimization by adding
L1-norm of �, i.e., the lasso penalty as follows:

minβ,β0

∑M

i=1

{
1 − yi

[
β0 +

∑N

j=1
βT

j hj

(
xij

)]}

+ λ‖β‖1 (11)

where � is the tuning parameter that controls the 379

trade-off between loss and penalty. The lasso penalty 380

shrinks the fitted coefficients β towards zero, and 381

hence benefits from the reduction in fitted coeffi- 382

cients’ variance. 383

Experimental design 384

We built four different classifiers, each designed to 385

classify individual ADNI participants as belonging to 386
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either the MCI-C group or the MCI-S group: Clas-387

sifier 1 is logistic regression (C-LR); Classifier 2 is388

logistic regression with L1 norm (C-LR-1); Classifier389

3 is support vector machine (C-SVM); and Classifier390

4 is SVM with L1 norm (C-SVM-1). To test the classi-391

fiers’ performance, we constructed five different data392

sources (Table 4). The first three single-modality data393

sets included clinical cognitive assessment scores and394

APOE4 status (CCA), all MRI volumes (ROI-NP),395

and MRI volumes with preselection (ROI-P), respec-396

tively. Two additional multi-modal data sets were397

constructed by combining the CCA data separately398

with ROI-NP and ROI-P data sets (i.e., brain vol-399

umes with and without preselection). Furthermore, it400

is interesting to note that the number of MCI-S sub-401

jects is 101 (38%) in the Group One and 122 (39%) in402

Group Two, which makes the data rather imbalanced.403

Consequently, to precisely report the results obtained404

from the models, the present study also assessed405

additional model performance parameters, includ-406

ing AUC score, sensitivity, and specificity (accuracy407

coefficient is unreliable for imbalanced data). The408

prediction procedure consisted of three processing409

stages for Group One (Time = 36 months) and Group410

Two (Time = 24 months): 1) Split data as training,411

validation, testing set; 2) Train classifiers using train-412

ing set, tune hyper-parameter using the validation set,413

and assess classifiers using testing set, then train clas-414

sifiers again using L1 norm on the same training set;415

3) Report the testing accuracy, AUC score, sensitivity416

and specificity of each classifier on single-modality417

data. Specifically, the first stage used 80% of the sam-418

ple as a training set while the remaining 20% of the419

data constituted the testing set. In the second stage,420

the optimal subsets of features of each data source421

are determined and chosen following application of422

L1 norm. We then list the top 10 features of each423

data set for each of the models. In the last stage, we424

report AUC score, sensitivity (percent of MCI-C sub-425

jects correctly classified), and specificity (percent of426

MCI-S subjects correctly classified) as measures of427

classification accuracy. To protect against over-fitting428

and to avoid optimistically-biased estimates of model429

performance, we report 20 measures of predictive430

performance for each classifier (1–4); for these dif-431

ferent partitions of the data, we report the mean and432

standard deviation of testing accuracy, AUC score,433

sensitivity, and specificity (Tables 6 and 7). We also434

investigate the relationship between the number of435

features and model performance. Finally, we com-436

pare the performance of LR with SVM based on their437

ability to handle the problem with a large number438

Table 4
Modalities

Data sources # features

Single-modality
Clinical Cognitive Assessments score and
APOE4 data (CCA)

19

ROI with no pre-selection data (ROI-NP) 259
ROI with pre-selection data (ROI-P) 26
Multi-modal
CCA and ROI with no pre-selection data
(CCAR-NP)

278

CCA and ROI with pre-selection data (CCAR-P) 45

of covariates. Figure 3 illustrates the diagram of the 439

prediction framework. 440

RESULTS 441

Cross-validation and choice of λ 442

We adopted 10-fold cross-validation to tune the 443

hyper-parameters for each model, which included 444

dividing the data into separate sets for training and 445

validation. The ratio of case in training and valida- 446

tion was 8:2. Here, the training set was used to train 447

the model and the validation set was used to select 448

the hyper-parameters. The results of a 10-fold cross- 449

validation run are summarized with the mean and 450

standard deviation of the model skill scores based on 451

testing data. Cross-validation was also applied to tune 452

the hyper-parameters; � is used to denote the hyper- 453

parameters for both LR-L1 and SVML1. To select 454

the optimized �, we tried different values of the �; 455

results reported here include values of � = 0.001, 0.01, 456

0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, and 0.8 and applied 457

them to the Eq (8) and (11). Next, we selected the 458

� value based on the best cross-validation score and 459

used the selected � with Classifiers 2 and 4 to select 460

optimal features. For brevity, the model performance 461

estimates are reported in Tables 6 and 7 for each dif- 462

ferent modalities, and the top 10 selected features 463

are reported in Table 5. For example, the best � for 464

ROI-NP-L1 was 0.01 and the top 3 optimal features 465

selected by LR were left amygdala, right accumbens 466

area, and right middle temporal gyrus. After hyper- 467

parameters were selected, we adopted a 10-fold 468

cross-validation again to avoid optimistically-biased 469

estimates of model performance. In each iteration, 470

212 of the 265 participants are selected by simple 471

random sampling as training cases and the remaining 472

53 were used as test cases. The approximate 4:1 ratio 473

of training to test cases is, of course, arbitrary. 474
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Fig. 3. Flowchart of the LR and SVM method. A) ROI-P: ROI level data with Pre-selection; B) ROI-NP: ROI level data with No Pre-selection;
C) CCAR: Clinical, Cognitive assessments score, APOE4, and ROI level data.

Comparison with different modalities475

We compared the performance of each classifier
476

(1–4) on the five different feature sets (Table 4) based477

on estimates of AUC, sensitivity, and specificity. As478

shown in Table 6, the results of using LR with L1 reg-479

ularization (Classifier 2) can achieve the high AUC480

of 81.2% and sensitivity of 81.4% on single-modality481

data (CCA), which is considerably better than perfor-482

mance of LR on the other four modalities. Similarly,483

the best AUC and sensitivity achieved by SVM are484

81.4% and 81.6% based on the combination of CCA485

and SVM-L1. Furthermore, we also found the highest486

accuracy achieved by both classifiers without apply-487

ing regularization is based on the single-modality data 488

(CCA); this indicated both classifiers perform best on 489

single-modality data. 490

Comparison of pre-selection and L1 norm 491

We found that using prior knowledge to inform 492

feature selection improves model performance 493

and protects against over-fitting. As shown in 494

Table 6, model performance (i.e., AUC) on ROI-P 495

(64.3%) and CCAR-P (76.3%) outperformed ROI- 496

NP (60.6%) and CCAR-NP (60.1%). However, the 497

performance of Classifier 2 on the ROI-NP-L1 and 498

CCAR-NP-L1 data sets had AUC score of 64.1% 499
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Table 5
Top 10 features of Group One obtained by L1 regularization

Source LR-L1 (Classifier 2) SVM-L1 (Classifier 4)
Data CCA ROI-NP CCAR-NP CCA ROI-NP CCAR-NP

1 FAQ AmyL FAQ FAQ AmyL FAQ
2 mPACCtrailsB AccmR AmyL Yrs. Educ. AccmR AmyL
3 APOE4 MTGR ADASQ4 APOE4 AOrGL AccmR
4 ADASQ4 HippoL HippoL mPACCdigit PCgGL AOrGL
5 Learning AOrGL MTGR ADASQ4 HippoL PTR
6 Yrs. Educ. PrGR APOE4 Learning PrGR AnGR
7 Forgetting PCgGL AOrGL ADAS11 POrGR APOE4
8 mPACCdigit InfR Learning mPACCtrailsB PTR PCgGL
9 ADAS13 POR mPACCtrailsB DELTOTAL LOrGL Learning
10 ADAS11 MOGL mPACCdigit Forgetting MOrGL POrGR

AccmR, Right Accumbens Area; AmyL, Left Amygdala; HippoL, Left Hippocampus; InfR, Right Inf Lat. Vent;
AOrGL, Left anterior orbital gyrus; AnGR, Left angular gyrus; LOrGL, Left lateral orbital gyrus; MOGL, Left
middle occipital gyrus; MOrGL, Left medial orbital gyrus; MTGR, Right middle temporal gyrus; PCgGL, Left
posterior cingulate gyrus; POR, Right parietal operculum; POrGR, Right posterior orbital gyrus; PrGR, Right
precentral gyrus; PTR, Right planum temporal.

Table 6
LR and SVM performance of Group One (Time = 3 years) for models on single and multi-modal feature sets

Source LR (Classifier 1 and 2) SVM (Classifier 3 and 4)
Modality Test Acc% AUC% Sp% Sn% Test Acc% AUC% Sp% Sn% #Features

CCA 74.3 ± 6.0, 80.8 ± 7.0, 62.3 ± 12.1 81.5 ± 6.2 72.4 ± 6.9, 80.0 ± 7.3, 53.6 ± 13.2 79.4 ± 7.7, 19(1);19(2)

ROI-NP 58.1 ± 7.0, 60.6 ± 8.1, 45.5 ± 13.4 65.3 ± 7.9 59.5 ± 7.3, 61.4 ± 8.5, 46.5 ± 11.5 67.3 ± 8.5, 259(1);259(2)

ROI-P 64.4 ± 6.5, 64.3 ± 6.6, 46.1 ± 10.4 75.0 ± 9.6 62.1 ± 5.9, 64.1 ± 6.2, 43.6 ± 9.5 78.4 ± 10.4, 26(1);26(2)

CCAR-NP 57.6 ± 7.2, 60.1 ± 8.1, 44.8 ± 12.5 65.1 ± 9.0 57.8 ± 6.8, 59.1 ± 7.0, 45.9 ± 10.4 65.1 ± 7.5, 278(1);278(2)

CCAR-P 72.7 ± 6.4, 76.3 ± 6.5, 60.5 ± 10.4 80.4 ± 8.2 66.9 ± 6.0, 69.2 ± 6.4, 53.6 ± 13.2 74.4 ± 10.5, 45(1);45(2)

CCA-L1 74.9 ± 6.4, 81.2 ± 6.7, 61.3 ± 12.0 83.1 ± 6.6 72.4 ± 6.0, 81.4 ± 6.9, 61.6 ± 11.5 81.6 ± 5.9, 4(1);3(2)

ROI-NP- L1 62.2 ± 6.6, 64.1 ± 7.9, 53.1 ± 13.1 68.1 ± 7.2 62.7 ± 5.8, 67.0 ± 6.7, 53.7 ± 11.6 67.7 ± 7.4, 29(1);27(2)

ROI-P- L1 64.4 ± 6.5, 64.3 ± 6.2, 46.2 ± 11.0 74.9 ± 9.6 64.4 ± 5.7, 64.7 ± 5.8, 46.7 ± 11.1 75.4 ± 8.3, 5(1);17(2)

CCAR-NP- L1 62.6 ± 7.2, 64.0 ± 8.2, 51.8 ± 12.7 69.5 ± 7.3 67.4 ± 6.4, 74.0 ± 7.4, 55.7 ± 12.1 74.1 ± 7.1, 18(1);27(2)

CCAR-P- L1 73.1 ± 6.5, 77.9 ± 5.9, 61.6 ± 10.5 79.6 ± 7.7 73.5 ± 6.2, 78.5 ± 6.4, 61.6 ± 9.3 80.8 ± 7.5, 14(1);25(2)

Predictive performance of LR and SVM (mean ± standard deviation) for all models. Performance estimates include testing accuracy (Test
Acc %), area under the cureve (AUC), sensitivity (Sn), and specificity (Sp). The number (#) of features was determined via (1): Classifier 2;
(2): Classifier 4.

and 64.0%, while the ROIP-L1 and CCAR-P-L1500

had respective AUC scores of 64.3% and 77.9%;501

this suggests that user-guided pre-selection signifi-502

cantly improved model performance over L1 norm.503

In addition, the SVM (Classifiers 3 & 4) had simi-504

lar and comparable results with LR classifiers. First,505

as with the LR models, the observed AUC estimates506

for CCAR-P and ROI-P (69.2% and 64.1%, respec-507

tively), were superior to AUCs from the CCAR-NP508

(59.1%) and ROI-NP analyses (61.4%). Classifier 4509

exhibited similar performance on the CCAR-P-L1 as510

Classifier 2, with an AUC value of 79.6%—higher511

than the model for CCAR-NPL1 (74.0%). Therefore,512

manually selecting features improves model’s perfor-513

mance whether L1 norm is applied, or not. Second,514

these results show it is necessary and important to515

use pre-selection because both LR and SVM mod-516

els on CCAR-P-L1, with respective AUC estimates517

of 77.9% and 78.5%, exhibited superior performance518

over the models without such pre-selection (i.e., LR 519

and SVM on CCAR-NP-L1 had AUC estimates of 520

64.0% and 74.0%, respectively). 521

Comparison of groups one and two 522

In addition to the results from models of Group 523

One (i.e., MCI-to-AD conversion over 36 months), 524

we also evaluated the performance of Group Two (i.e., 525

MCI-to-AD conversion over 24 months) in an effort 526

to gain further insight regarding possible benefits of 527

shorter or longer assessment periods on classifica- 528

tion of the progression of MCI to dementia. Table 7 529

summarizes the predictive performance of LR and 530

SVM for Group Two. Similarly, we also evaluated 531

classifier performance for single- and multi-modality 532

feature sets. The best result is obtained by using 533

SVM-L1 model (Classifier 4) on CCAR-P, and its cor- 534

responding AUC, Sn and Sp are 76.2%, 60.1%, and 535
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Table 7
LR and SVM performance of Group Two (Time = 2 years) for single-data and multi-modal data

Source LR (Classifier 1 and 2) SVM (Classifier 3 and 4)
Modality Test Acc% AUC% Sp% Sn% Test Acc% AUC% Sp% Sn% #Features

CCA 69.9 ± 5.3, 76.2 ± 5.5, 56.7 ± 9.0 79.3 ± 7.3 69.4 ± 5.4, 75.4 ± 5.5, 56.7 ± 8.8 78.6 ± 7.1, 19(1); 19(2)

ROI-NP 58.1 ± 4.2, 58.8 ± 5.6, 49.7 ± 7.1 64.4 ± 5.9 57.8 ± 5.0, 56.6 ± 6.4, 50.3 ± 7.1 62.9 ± 7.5, 259(1); 259(2)

ROI-P 63.4 ± 4.7, 65.8 ± 4.3, 43.7 ± 10.2 77.8 ± 8.6 64.5 ± 4.7, 66.2 ± 5.0, 44.5 ± 8.5 79.1 ± 9.1, 26(1); 26(2)

CCAR-NP 57.3 ± 4.0, 58.8 ± 5.4, 47.5 ± 8.3 64.3 ± 5.8 56.6 ± 5.5, 56.4 ± 5.2, 48.9 ± 7.9 62.3 ± 10.4, 278(1); 278(2)

CCAR-P 70.2 ± 5.4, 74.0 ± 5.0, 56.7 ± 9.5 80.6 ± 7.0 69.5 ± 4.9, 72.0 ± 5.3, 58.1 ± 8.1 78.0 ± 8.2, 45(1); 45(2)

CCA-L1 70.1 ± 4.8, 76.3 ± 5.3, 56.8 ± 9.9 79.8 ± 7.6 70.4 ± 4.9, 76.4 ± 7.7, 56.8 ± 9.8 79.4 ± 7.7, 4(1); 3(2)

ROI-NP- L1 62.2 ± 6.0, 64.7 ± 6.0, 48.8 ± 9.2 72.0 ± 6.8 60.8 ± 4.5, 65.9 ± 6.1, 53.6 ± 7.5 64.3 ± 7.9, 29(1); 31(2)

ROI-P- L1 64.1 ± 4.6, 66.8 ± 3.8, 42.8 ± 11.3 79.8 ± 8.4 65.4 ± 4.0, 67.8 ± 3.9, 46.3 ± 9.4 81.8 ± 7.2, 6(1); 14(2)

CCAR-NP- L1 62.6 ± 6.3, 64.8 ± 6.0, 49.1 ± 9.1 72.1 ± 6.1 64.5 ± 5.1, 71.7 ± 4.8, 55.4 ± 7.8 71.4 ± 8.9, 26(1); 32(2)

CCAR-P- L1 70.0 ± 5.5, 74.3 ± 5.5, 57.8 ± 8.0 78.3 ± 8.8 71.3 ± 4.9, 76.2 ± 4.7, 60.1 ± 7.1 79.2 ± 8.5, 14(1); 27(2)

For each modality, the predictive performance of LR and SVM are shown (mean ± standard deviation), including testing accuracy, AUC,
sensitivity (Sn), specificity (Sp), # features is the number of features; # features is the number of features; this parameter was determined
via (1): Classifier 2; (2): Classifier 4.

Fig. 4. Model performance on ROI feature set by number of features for LR and SVM. Panel (a) shows dramatic growth in AUC with LR as
the number of features increases from 1 to 30, and then becoming more static at approximately 74%, i.e., as the number of features increases
from 30 to 40, but drops significantly when the number of features reaches to 41. Panel (b) shows the AUC increased dramatically as the
number of features grows from 1 to 28, but fluctuated after 29. The optimal number of ROI features for both methods are 29 and 28, and
their corresponding optimized AUC were approximately 74.0% and 78.0%.

79.2%, which verifies the assumption that manually536

selecting techniques improves the model’s perfor-537

mance again. However, it warrants mention that all538

classifiers’ performance on the Group One data out-539

performed the same classifiers’ performance on the540

same data sets in Group Two. For example, Classifier541

2 of Group One on CCA achieved AUC and Sn val-542

ues of 81.2% and 83.1%, which is considerably better543

than the same classifier of Group Two on CCA (i.e.,544

76.3% and 79.8%). Similarly, Classifier 3 for ROI-545

NP had an AUC of 61.4% for Group One and 56.6%546

for Group Two. The experimental results indicated547

superior model performance on data obtained using548

longer than using shorter follow-up periods. Given549

the uncertainty in conversion, a longer time window550

for assessment of cognitive and functional change 551

clearly yields more accurate classification. 552

Comparison of LR and SVM 553

In addition to comparing classification between 554

different time windows of assessment, we also com- 555

pared performance differences between LR and 556

SVM. The results, including models’ ability to 557

address the overfitting problem of LR and SVM meth- 558

ods with different modalities are displayed in Tables 6 559

and 7 and Figs. 4 and 5. First, it is worth noting that 560

both LR and SVM do not work well if no L1 penal- 561

ization used, since Classifiers 2 and 4 outperform 562

Classifiers 1 and 3 on the same data set. Second, it 563
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Fig. 5. Model performance on CCA feature set by number of features for LR and SVM. Figure (a) shows there is a significant increase in
the AUC with LR as the number of features increases from 1 to 5, then there is a slight decrease in the testing accuracy when the number of
features is greater than 5. Figure (b) shows the AUC shot up dramatically as the number of features increases from 1 to 4. The optimal number
of CCA features obtained by LR and SVM are 5 and 4, and their corresponding optimized AUC are approximately 84.0% and 83.0%.

is worth noting that SVM has a better performance564

on MRI data when the L1 feature selection method565

is employed. Third, it was possible to obtain good566

performance accuracy using LR, which had equiva-567

lent model performance as SVM for “large p” data568

(ROI-P), as evidenced by respective AUC estimates569

for Classifiers 1 and 3 of 64.3% and 64.1%. Finally,570

as shown in Figs. 5 and 4, the SVM method is more571

stable and robust than LR to the large number of572

features when n is small. To summarize, the best per-573

formance of Group One was achieved by Classifier 4574

(SVM with L1 norm) when using multi-modal, i.e.,575

CCAR-L1, had an AUC of 81.4%.576

DISCUSSION577

In this study, we applied two machine learning578

methods under multiple conditions, to test accuracy579

in classifying patients with MCI who progress to580

clinically-defined dementia (MCI-C) from those who581

remain stable (MCI-S). Using multi-modal data from582

ADNI, we compared LR and SVM classification583

accuracy and pre-selection dimensional reduction584

techniques, i.e., feature selection as informed by prior585

findings in clinical neuroscience and by L1 norm.586

Notably, the present results demonstrate important587

boundaries for applying feature selection techniques588

in statistical classification of MCI-to-dementia con-589

version. Specifically, we found that while using L1 for590

pre-selection can improve accuracy, it also benefits591

from a more limited, theoretically based set of feature592

inputs. In addition, we found that model performance593

benefited from a longer window of assessment. These594

results have implications for studies utilizing multi- 595

modal data for such classification, including features 596

from clinical neuropsychological assessment, demo- 597

graphic and genetic markers, MRI-based volumetric 598

brain measures, and other modalities. 599

Comparison of user-defined and L1 pre-selection 600

for LR and SVM classifiers yielded multiple note- 601

worthy findings, consistent with previously published 602

reports [1, 2, 5, 8, 13, 23, 25, 35]. First, the classifica- 603

tion results showed that the model using multi-modal 604

data with cognitive, clinical, and volumetric data 605

(CCAR) achieved better classification accuracy than 606

the methods based on single-modality (CCA, ROI). 607

Moreover, the AUC of CCAR based on LR or SVM 608

was either statistically significantly or at least numer- 609

ically greater than those based on the single-modality 610

model. Based in AUC, we reported the highest accu- 611

racy was observed for CCAR data at 78.5% by L1 612

SVM and 77.9% by L1 LR. Second, SVM demon- 613

strated several advantages over LR in discriminating 614

MCI-C from MCI-S (Fig. 4). For one, SVM per- 615

formance tended to be more stable than LR when 616

the number of features was relatively large. In other 617

words, the model performance of SVM on ROI 618

data remained more stable than LR when using 619

larger numbers of features without user-defined pre- 620

selection. In particular, SVM performance on ROI 621

data improved as the number of features increased 622

from 20 and 30. In contrast, the AUC values for ROI 623

data sets remained fairly static despite increasing the 624

number of features. However, LR model performance 625

decreased gradually after the number of ROI features 626

reached 40. Third, the classification results clearly 627
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demonstrate that manually selecting features on MRI628

data not only improved the model performance and629

protected the classifier from overfitting, but also630

affords easier interpretation of each selected feature’s631

contribution to the model. In addition, we show that632

pre-selection improves performance: Tables 6 and 7633

suggest it is the best strategy to obtain the maximum634

model performance, compared to features selection635

based on L1 norm.636

The present findings can also be interpreted in the637

context of other reports over the past decade that also638

investigated the prognostic capacity of brain volume-639

try data to predict the conversion of MCI to dementia,640

using either SVM or LR, and that also combined641

volumetry data with other imaging and biomarker642

modalities such as MRI, functional MRI (fMRI), PET643

to cerebrospinal fluid (CSF) protein markers [1, 2,644

5, 8, 13, 23, 25, 35, 41–43]. In addition, one can645

vary the degrees of non-linearity and flexibility in646

the model by employing different kernel functions.647

For example, Young et al (2013) report [8], results648

from both SVM and Gaussian process (GP) clas-649

sification on MCI progression in ADNI data using650

MRI, PET, APOE4, and CSF biomarkers. In contrast651

the present study and with other published work that652

used MCI-C and MCI-S groups as training and test653

data sets, they trained a classifier to distinguish cog-654

nitively normal older adults from those diagnosed655

as probable AD. They reported that the accuracy656

using GP, an AUC value of 79.5%, was substan-657

tially higher than using any individual modality or658

using multi-kernel SVM. Other studies of MCI-to-659

dementia classification reporting high accuracy have660

also implemented other approaches such as multi-661

ple kernel learning (pMKL) classification techniques662

using clinical, MRI and plasma biomarkers data. One663

method using this approach to identify the important664

features first grouped the data set into five differ-665

ent data sources and then applied a filter-wrapper666

approach of feature selection techniques in combi-667

nation with Joint Mutual Information (JMI) criterion668

to achieve an AUC of 82% [23].669

We also found consistently superior classification670

performance in patients classified under a longer win-671

dow of assessment. MCI-to-dementia conversion is a672

process that can take several years to reliably track an673

individual from onset of amnestic MCI to early-stage674

dementia [8, 44, 45]. For the modeled features to be675

of use for classification necessitates well-defined, if676

not orthogonal classes. However, MCI is not inher-677

ently prodromal to dementia: a large proportion of678

individuals with MCI never progress, either revert-679

ing to cognitively normal status or remaining rather 680

stable. Furthermore, others may show early evidence 681

of brain atrophy that precedes cognitive impairment 682

by years. In order to account for this variable timing, 683

others have employed methods such as supervised 684

learning using time windows [46]; however, even 685

those methods strongly benefit from longer follow- 686

up periods. Thus, MCI is an inherently heterogeneous 687

and poorly-defined class, particularly in terms of the 688

relationships between brain characteristics and the 689

likelihood and timing of further cognitive decline. 690

The brain volumetric data evaluated in the present 691

study were to limited baseline MRI scans. Alter- 692

natively, classifying cognitive decline may benefit 693

from further extending the model to accommo- 694

date repeated measurements from longitudinal data. 695

While the inclusion of repeated volumetric data 696

should improve classification accuracy, quantifying 697

the improvements in model performance may also 698

depend on other factors, such as added noise or redun- 699

dancy from additional brain parameters, or variability 700

in disease progression. In addition, most recent com- 701

putational neuroimaging studies in the past few years 702

have utilized features from multiple neuroimaging 703

modalities [5, 26, 36, 37, 39, 47–50]. For exam- 704

ple, when Ding et al. applied SVM with PET and 705

MRI data to classify the transition from MCI to 706

AD, they reported the sensitivity and specificity were 707

66.67% and 64.52% [36]. In addition to PET and 708

structural MRI data, CSF protein markers can be 709

used to predict progression from MCI to AD, in 710

addition to proteomic, demographic, and cognitive 711

data [38, 51, 52]. By applying LR with L1 norm to 712

CSF markers for classifying individual patients as 713

belonging to either the MCI-C and MCI-S group, 714

one study reported a sensitivity and specificity of 715

80% and 75% [26]. Furthermore, Varatharajah and 716

colleagues (2020) showed SVM-linear outperforms 717

other advanced classification methods, including lin- 718

ear classifiers—multiple kernel learning (MKL) with 719

linear kernels, SVM with a linear kernel, and gener- 720

alized linear model (GLM), in predicting transition 721

from MCI to AD [42]. In general, LR works well 722

when the data is linearly separable and the number of 723

data is greater than the number of features, whereas 724

SVM with Gaussian Kernel is mostly used when 725

the data is not linearly separable. In addition to LR 726

and SVM, deep neural network approaches also offer 727

benefits [41, 53], but have not had the extent of appli- 728

cation in ADNI data as SVM and LR. Using a novel 729

LR, artificial neural network (ANN) model and deci- 730

sion tree (DT) model for classifying the progression 731
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of MCI to AD, Kuang (2021) reported that the ANN732

exhibited the highest sensitivity at 82.1% [43].733

In conclusion, models applying prior knowledge734

for classification and prediction of MCI-to-dementia735

conversion outperform those without pre-selection.736

This theoretically guided pre-selection of features737

from MRI-based regional brain volumes appears to738

protect the model against over-fitting. In addition, the739

present findings demonstrate that SVM classifier per-740

formance is more stable than LR for dealing with the741

“large p” problem. Clinical researchers should both742

note the value of evaluating different classification743

and pre-selection approaches in application to clini-744

cal or research questions and be mindful that not all745

machine learning techniques are equally beneficial746

for modeling specific clinical outcomes.747
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